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The Kalman Earth Orientation Filter (KEOF) developed at the Jet Propulsion Laboratory 
(JPL) is an operational software system that generates real-time and retrospective estimates 
as well as predictions of the Universal Time and polar motion (UTPM) parameters used in 
Earth orientation calibrations to support all JPL interplanetary flight projects. KEOF ac-
complishes this task by the timely combination of specific UTPM measurements using the 
Kalman filter and smoother algorithms. The behaviors of KEOF are governed by the sto-
chastic models for the three UTPM parameters as well as the observation models that relate 
the dynamical variables with the measurements and quantify the measurement uncertain-
ties. Since the first publication of the KEOF’s governing equations in 1988, the structures of 
these stochastic and observation models and their parameter values have undergone steady 
updates due to advances in scientific understanding of the forces that affect Earth’s rotation 
and orientation as well as improvements in accuracy of the instruments that measure these 
phenomena. This article describes the past and present versions of stochastic and observa-
tion models, including those used currently in KEOF operations. It also suggests potential 
areas of future improvements.

I. Introduction

The orientation of the Earth with respect to inertial space must be known in order to ef-
fectively utilize radiometric data to track and navigate spacecraft. The natural variability in 
Earth orientation is a significant source of error for high-precision spacecraft tracking and 
navigation [1]. The Deep Space Network (DSN) thus requires estimates of Earth orientation 
parameters (EOPs) as a function of time. The Kalman Earth Orientation Filter (KEOF) opera-
tion is directed at addressing this requirement.

KEOF provides daily estimates and short-term (up to 80 days) predictions of EOPs. The five 
traditional components of EOPs are the ecliptic longitude and obliquity offsets of the celes-
tial intermediate pole (D} and Df), x and y components of polar motion (pX and pY), and 
Universal Time (U ). Since the nutation parameters D} and Df can be modeled to sufficient 
accuracy, KEOF needs to update and forecast only the Universal Time and polar motion (U , 

pX, pY), collectively referred to hereafter as UTPM.



2

A 1‑milliarcsecond (mas) change in polar motion corresponds to a 3.09‑cm translation on 
Earth’s surface (assuming mean Earth radius), while a 1‑millisecond (ms) change in Univer-
sal Time corresponds to an equatorial displacement of 46.3 cm. The present DSN require-
ments for Earth orientation estimation errors1 specify that the error standard deviation 
(1 sigma) shall be no larger than
 

30 cm in each of the three UTPM components in real time;  •	

5 cm in each component for a posteriori reconstructions after 14 days.•	

The first requirement implies that the UTPM estimates must be updated sequentially in 
time as soon as new measurements become available, while the second requirement implies 
that the past UTPM estimates would continue to be updated retrospectively as the measure-
ments are accumulated over time. In the parlance of estimation theory, these procedures 
are called filtering and smoothing, respectively [2]. Using the Kalman filter algorithm, KEOF 
generates the UTPM estimates sequentially in time by an optimal combination of hetero-
geneous EOP measurements. A smoothing algorithm is then used to update the filtered 
estimates retrospectively based on archived measurements.

The Kalman filter and smoother are based on the Bayesian estimation principle, which re-
quires statistical specifications of the UTPM dynamics and the EOP observation uncertainty 
in order to determine an optimal solution. To apply the filter algorithm, the UTPM dynam-
ics as well as relations between UTPM and their noisy observations must be expressed in a 
standard linear dynamic system model [2]. Specifically, the UTPM dynamics are modeled as 
a vector Markov process

dt
dx
= Fx + ~

where the state vector x(t) contains the three UTPM variables as well as several auxiliary 
variables to be described in this article, ~ (t) is a vector of white noise processes [2], and the 
matrix F specifies the modeled dynamics. The white noise processes in ~ (t) are assumed to 
have a joint distribution where the random vector ~ lt] gd

t

t+ Dt# lt  at any time t and interval 
Dt 2 0 has a covariance matrix of QDt for a given parameter matrix Q. The observation 
model is generally given as a linear equation

z = Hx + o

where z t] g is the set of observation data at time t, o t] g is the measurement error (uncer-
tainty), and H t] g is the observation operator that relates each observation with a set of state 
variables. The measurement error o t] g is modeled as a white noise vector with a covariance 
matrix R t] g. The outcomes of the Kalman filter and smoother are determined primarily by 
the four parameter matrices of the model equations: the system matrix F, the observation 
matrix H, and the two covariance matrices Q and R. The contents and dimensions of the 
matrices H t] g and R t] g are dependent on the number and type of measurements available 

(1)

(2)

1 Tracking and Navigation Service: Requirements and Design, DSMS No. 821‑104 Rev. B, JPL D-17235 (internal document), Jet 
Propulsion Laboratory, Pasadena, California, 2003.
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at epoch t and are hence time-varying, while F and Q are constant matrices. The purpose 
of this article is to describe the components and parameters of the model equation [Equa-
tions (1) and (2)] used operationally in KEOF.

Since the first publication of KEOF’s governing equations in 1988 [3], the model equations 
and their parameter values have been updated periodically, due to advances in measure-
ment techniques and instrumentations and in scientific understanding of the driving forces 
for Earth’s rotation and wobbles. The operational KEOF software systems are chronologi-
cally labeled OP-A, OP-B, and OP-C, with the current version being OP-C. The OP-A version 
was coded for VAX computers using single-precision numerics, while OP-B was also coded 
for VAX computers but in double-precision numerics. The OP-C is coded for Linux-based 
computers using double-precision numerics. The main differences among the KEOF versions 
are primarily due to the observation data sets used and to updates in the stochastic models, 
as described in this article. 

Section II presents the components of the stochastic model Equation (1), while Section III 
provides details of the observation model Equation (2). Section IV discusses realization of 
the full state dynamics. Numerical implementations of the Kalman filter and smoother 
are outlined in Section V. Section VI concludes with a summary, including a list of potential 
future upgrades.

II. UTPM Dynamics

The Kalman filter and smoother are algorithms to estimate the state variables of the mod-
eled dynamics [Equation (1)]. The mechanics of UTPM are the central components of the 
state dynamics. The state dynamics also contain stochastic models of the variables whose 
role is to excite the UTPM dynamics. These variables are called the excitation processes. The 
state vector x thus contains the excitation processes as well as the three UTPM variables. 
This section describes the dynamics of UTPM and excitation processes.

The third and last category of the state variables is called colored noise processes. The col-
ored noise processes are associated with specific instruments or methods for observations 
and are described in Section III. All variables in the state x and stochastic forcing ~ vectors 
are listed in Tables 1 and 2, respectively. A comprehensive summary of the state equations 
[Equation (1)] is provided in Section IV.

A. Earth Rotation Mechanics

Models of UTPM dynamics are derived based on the principle of conservation of angular 
momentum as applied to Earth’s rotation. Series of linearization and other reasoned ap-
proximations are made [4] to obtain the simple forms described here. 

The polar motion is represented by a fixed-period oscillator whose amplitude and phase are 
modulated by the excitation function | as 

p+ vcw
i
dt
dp
= | (3)
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where i / -1  is the unit imaginary number, vcw / v 1 + i/2Q^ h is the complex-valued 
(damped) frequency of the Chandler wobble, p / pX t] g- ipY t] g is the polar motion 
(complex representation), and | / |1 t] g+ i|2 t] g, where |1 t] g and |2 t] g are the x and y 
components, respectively, of the excitation function. By convention, the positive pY  direc-
tion is defined to be along the meridian at 90 deg west longitude, whereas the positive |2 
direction is taken to be along the meridian at 90 deg east longitude. (Positive pX and |1 are 
both aligned at 0 deg longitude.) The two Chandler frequency parameters are estimated 

Table 1. State variables in KEOF. “Label” names are used in Fortran code (e.g., file comp.tab).  

The “OP-” column shows the KEOF version(s) in which the variable is used.  

Units: d = day, mas = milliarcsecond, ms = millisecond. 

Variable

pX

pY

n1

n2

S

U

L

A

nA

nAa

b

nAf

nG 0

nG1

Label

PMX 

PMY

MU1

MU2

S

SDOT

UT1

LOD

AAM

MUA

MUA

B

MUF

MUGRW

MUGAR1

Unit

mas

mas

mas

mas

mas

mas/d

ms

ms/d

ms/d

ms/d

ms/d

ms/d

ms/d

ms/d

ms/d

OP-

A,B,C

A,B,C

A,B,C

A,B,C

A,B,C

A,B,C

A,B,C

A

B,C

B,C

A

A,B,C

A,B,C

B,C

B,C

Definition

Polar motion, x component

Polar motion, y component

Polar motion excitation, random walk for |1

Polar motion excitation, random walk for |2

Polar motion excitation, annual periodicity for |2

Time derivative of S

UT1–TAI

Excess length of day (LOD), defined as -dU/dt

Atmospheric angular momenteum (AAM)

Excitation process / L- A

Colored noise process for the AAM analysis

Constant bias (noise) in the AAM forecast

Colored noise process for the AAM forecast

Colored noise for GPS LOD, random walk

Colored noise for GPS LOD, AR-1

oS

Table 2. Elements of the white noise vector ~ t] g that excites the KEOF stochastic model. “Label” names are  

used in Fortran code (e.g., file init.nml). “Power spectral density” values form the diagonal of the  

parameter matrix Q. The “OP-” column shows the KEOF version(s) in which the variable is used. 

Variable

~1

~2

~1

~2

~S

~A

~L

~nA

~Aa

~A f

~G 0

~G1

Label

o3

o3

o3

o3

o6

o8

o8

o9

o9

o11

o12

o13

Power Spectral Density

739.21971252567 mas2/d

739.21971252567 mas2/d

246.4065708418891 mas2/d

246.4065708418891 mas2/d

4.263518799241 × 10–4 mas2/d3

0.0036 ms2/d3

0.0036 ms2/d3

0.0007 ms2/d3

0.0007 ms2/d3

0.00258 ms2/d3

5 × 10–6 ms2/d3

5 × 10–4 ms2/d3

OP-

C

C

A,B

A,B

A,B,C

B,C

A

B,C

A

A,B,C

B,C

B,C

Definition

PMX excitation, random walk

PMY excitation, random walk

PMX excitation, random walk

PMY excitation, random walk

PMY excitation, annual oscillator

AAM excitation

LOD excitation

AAM-residual excitation

AAM analysis colored noise

AAM forecast colored noise

GPS LOD error, random walk

GPS LOD error, AR-1
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from polar motion measurements and can vary slightly depending on the data sets and 
techniques used to estimate them (e.g.,[5]). The values used in the operational KEOF are 
v = 2r/Tcw = 2r/433 rad per day and Q = Qcw = 170, corresponding to an e-folding 
decay time of 64 yr (Table 3).

Table 3. Parameters of the dynamical model used currently in KEOF (OP-C version).  

“Label” names are used in Fortran code (e.g., file init.nml).

Parameter

Tcw

Qcw

Taw

xaw

xF

xG

Label

cwper

qf

awper

awdamp

tfl

tg

Value

433 d

170

365.25 d

2500 d

5 d

1/0.44 d

Description

Chandler wobble period

Chandler wobble quality factor

Annual wobble period

Annual wobble damping time constant

AAM LOD forecast uncertainty time constant

GPS LOD uncertainty time constant

Among the components of Earth orientation, Universal Time varies most dramatically and 
unpredictably from day to day. The dynamics for Universal Time U (t) can be given as

dt
d
U =-L

where L (t) is the excess length of day (LOD) defined as ,- ,0^ h/,0 with a unit of ms/day, 
where , is the instantaneous length of day and ,0 is the reference value of 86,400 s. The 
Universal Time variable U  is defined here as UT1–TAI, where UT1 is the standard measure 
of the angle about the polar axis through which Earth has rotated, and TAI is a uniform 
reference time given by atomic clocks. Two commonly used reference time series are Temps 
Atomique International (TAI) and Coordinated Universal Time (UTC). UTC differs from TAI 
by an integer number of seconds, since it uses a leap second every year or two to compen-
sate for the fact that Earth’s rotation rate — and hence, length of day — varies. By design, 
the Sun crosses the meridian of Greenwich, England, at noon UTC on average. The date of 
origin is defined so that U = UT1–TAI was 0 on January 1, 1958.

B. Excitation Processes

The forcing terms (|1, |2, L) of the UTPM mechanics [Equations (3) and (4)] are often called 
the excitation functions. In KEOF, each excitation function is modeled as a sum of stochas-
tic processes as  

|1 = p1, i,
i= 1

N 1

/ |2 = p2, i,
i= 1

N 2

/ L = p3, i
i= 1

N 3

/

where p j, i is hereafter referred to as an excitation process. The excitation processes defined 
in KEOF at present are n1 , n2 , nA, A, L, S, oS, as listed in Table 1. All excitation processes 
used in KEOF except for S  and oS  are random walk (Brownian motion) processes [6]; S and oS 
jointly form a stochastic oscillator. 

(5)

(4)
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Each excitation function is modeled empirically. In particular, the polar motion excitation 
function | t] g contains periodicities from a variety of sources, including seasonal oscilla-
tions in the surface air pressure [7]. Variations in atmospheric pressure drive the polar mo-
tion more effectively over the solid land than the sea surface, as the ocean can compensate 
for the variations by redistributing its mass (the inverted barometer effect). Due to asym-
metries in the distribution of continents and oceans, the |2  component is more sensitive 
to variations in the surface air pressure over land than |1. Morabito and others [3] have 
thus modeled |2 as a random walk n2 plus an annual oscillation S  representing the pressure 
variation, while modeling |1 as only a random walk n1, or

|1 = n1, |2 = n2 + S

The dynamics of the excitation processes n1, n2 , and S  are in turn given as

dt
d
n1 = ~1, dt

d
n2 = ~2,

dt2
d2
S + a1 dt

d
S + a2S = ~S

where ~1, ~2, and ~S are white noise processes listed in Table 2, while a1 / 2/xaw and 

a2 / a1
2 /4 + 2r/Taw^ h

2  are constants such that the resonance period of S (t) would be Taw 
with the dissipation time of xaw. Values used for Taw and xaw can be found in Table 3. All 
KEOF versions so far (OP-A, B, and C) use the polar motion model [Equations (3,6,7)].

Atmospheric circulation is a dominant contributor to short-term variability of Earth orien-
tation. For Universal Time dynamics, the strong correlation between LOD and atmospheric 
angular momentum (AAM) is well documented [8,9], and the AAM data from weather 
forecast models are shown to be particularly effective for accurate forecasts of Universal 
Time [10]. (See also Section III.C.) In the OP-A version of KEOF, the Universal Time excita-
tion function L, or LOD, is modeled as a single random walk process as

dt
d
L = ~L

where ~L is again an element of the white noise vector ~(t) as given in Table 2. In this 
model, AAM is considered to be providing a direct observation of LOD as discussed in Sec-
tion III.C. In the OP-B and C versions, on the other hand, the physical AAM process A is 
explicitly introduced as an excitation process. In the new model, LOD is expanded by two 
excitation processes as

L = A + nA

where A is the AAM contribution to LOD and nA  is the residual LOD process, and each 
excitation process is a state variable modeled as a random walk as 

dt
d
A = ~A, dt

d
nA = ~nA

where ~A and ~nA are elements of ~(t) as before (Table 2). In the new model, the AAM data 
are considered to be providing observations of the state variable A (as opposed to L), while 
all non-atmospheric components of LOD are lumped into the excitation process nA.

(6)

(7)

(8)

(9)

(10)
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C. Stochastic Parameterization

Stochastic dynamics of the excitation processes are determined empirically by fitting au-
toregressive models to time series obtained from historical UTPM trajectories. To model the 
stochastic behavior of the UTPM parameters, the effects of physical processes that influ-
ence the rotation rate in a deterministic and, hence, predictable manner are first excluded 
from the observed series. Foremost among the predictable processes are the tides of solid 
Earth and ocean, whose effects can be evaluated using conventional tidal models [11]. 
Specifically, the effect of the solid-Earth tides is removed by using the model by Yoder 
and others [12], while the effect of the ocean tides at the Mf, Mf’, and Mm tidal frequen-
cies is removed using the model by Kantha and others [13]. Since the former [12] includes 
a contribution from the equilibrium ocean tides, the latter [13] is used only to correct 
for deviations from the equilibrium. At present, effects of solid-Earth and ocean tides are 
removed from only UT1 and LOD but not polar motion. Additionally, annual and semi-an-
nual signals (determined empirically by sinusoidal fits to past measurements) are removed 
from UT1, LOD, and AAM (Table 4). All removed signals are added back to the filtered and 
smoothed estimates to recover full UTPM values.

The remaining, stochastic components of the UTPM dynamics can usually be modeled by 
simple regression formulas, especially over the daily to monthly frequency range of interest 
to the KEOF operations. The random walk characterization of the LOD and AAM process-
es [14,9,8] is a well-established example of such formulation. The LOD model can also be 
refined further by expanding it using several excitation processes, as detailed in [15].

As a demonstration of KEOF stochastic modeling procedure, empirical characterization of 
the polar motion excitation processes n1 and n2 are considered. Random walk models are 
also used for n1 and n2, which can emulate the characteristic slope of the empirical power 
spectra from GPS data (solid black curves, Figure 1) over the range of periods from a day 
to 2 weeks that are of interest to KEOF operations. The GPS data are derived from the daily 
IGS Final combined series of polar motion and its rate (the latter of which facilitates com-
putation of the excitation series without resorting to numerical differentiation), and it is 
assumed that the estimation error in the GPS data does not contribute significantly to the 

Table 4. Annual and semi-annual signals removed from the LOD, UT1, and AAM observations 

before ingestion by the Kalman filter. The removed signal for each observation type is given 

by Cann cos 2r t - t0] g/Tann + Sann sin 2r t- t0^ h /Tann + Csemi cos 2r t- t0^ h /  

Tsemi + Ssemi sin 2r t- t0^ h /Tsemi , where Tann and Tsemi are annual and semi-annual 

periods in days, respectively, and the unit for the reference day t0 is Julian Day (JD). The unit 

of the harmonic coefficients is milliseconds. The coefficients for UT1 are computed analyti-

cally from the LOD coefficients according to Equation (4). “Label” names are used in Fortran 

code (e.g., file comp.tab), which defines the shown values in the file season.tab.

Observation

LOD

AAM analysis (Aa)

AAM forecast (Af )

Label

LOD

AAM

FOR

2447527.5

2447527.5

2447527.5

0.2880

0.3928

0.3471

0.1704

0.2821

0.2956

–0.1433

–0.0516

–0.0555

–0.2569

–0.1672

–0.1773

t0 Cann Sann Csemi Ssemi
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spectra shown in Figure 1. As EOP measurement accuracy improves over time, occasional 
updating of KEOF’s stochastic parameterizations such as the excitation processes becomes 
necessary. In particular, the power spectral density (PSD) values (Table 2) of the forcing pro-
cesses ~1 and ~2 used in the OP-B version have been found to be too small, as evident from 
comparing the spectra of the OP-B random walk models (dashed lines, Figure 1) against the 
spectra derived from the GPS data. As a result, the power spectra of the OP-B polar motion 
series (dashed lines, Figure 2) indicate an over-smoothing for the frequencies higher than 
60 cycles per year (or periods shorter than 6 days). Since increasing the PSD values of ~1 and 
~2 by threefold (red lines, Figure 1) would lead to a better match with the GPS data, these 
new values have been adopted in the current OP-C version (Table 2). The corresponding 
OP-C polar motion spectra (red lines, Figure 2) show a significant correction of the over-
smoothing effects.

Further improvement in parameterization of polar motion excitation is possible. For ex-
ample, Figure 1(b) indicates that a fivefold, rather than threefold, increase in the PSD values 

Figure 1. PSDs of polar motion excitations |1 and |2 computed from IGS Final analyses of polar motion and 

polar motion rate (solid black curve) and theoretical PSDs of the n1 and n2 random walk models used in OP-B 

(gray dashed). Several other random walk PSDs are obtained for each of n1 and n2 by varying the strength of 

the forcing white noise processes (~1 and ~2, respectively) controlled by the parameter o3. Shown are the PSDs 

obtained when the o3 parameter value used in OP-B (Table 2) is increased by threefold (red), fivefold (dark blue), 

tenfold (green), and thirtyfold (light blue).

Period, days

m
as

2  
d

m
as

2  
d

104

104

103

103

102

102

8 4 2

GPS

OP–B

× 3

× 5

× 10

× 30

(a) c1 Spectra

(b) c2 Spectra
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for ~2 is more consistent with the empirical spectrum. Such additional increase in forcing 
level of the excitation process n2  did not lead to significant change in the polar motion 
spectra — blue and red curves, Figure 2(b). Modeling of n1 and n2 should nevertheless re-
flect asymmetric distribution of land and ocean on Earth’s surface, and improved modeling 
of the polar motion excitation functions is presently under consideration.

D. Improving Stochastic Models of Excitation Processes

The random walk model is used in excitation processes for both UT and PM dynamics. 
Prediction based on a random walk model implies a persistence of the most recent esti-
mated value. Specifically, for an arbitrary random walk state variable n, the Kalman filter 
would use the equation dt

d
n = 0 to generate the prediction. Thus, all future values would be 

identical to the present estimate, or n t] g = tn tp^ h for t $ tp, where tp is the time of the most 
recent data update and tn is the corresponding updated value. Such a prediction scheme 
based on persistence is particularly problematic because instantaneous effects such as mea-
surement noise could introduce permanent bias in the prediction series.

Figure 2. PSDs of the IGS Final polar motion series (solid black curve) and of KEOF polar motion series analyzed 

using the six o3 parameter values of Figure 1: value used in OP-B (gray dashed), the OP-B value increased by 

three fold (red), fivefold (dark blue), tenfold (green), and thirtyfold (light blue). 

Period, days

m
as

2  
d

m
as

2  
d

100

100

10–2

10–2

10–4

10–4

16 8 4 2

GPS data

o3 (OP–B)

o3 x 3

o3 x 5

o3 x 10

o3 x 30

(a) PX Spectra

(b) PY Spectra
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A remedy for this is to replace the excitation process with a sum n = rn+ m of a much 
slower (lower variance) random walk rn and a tapering process m such as the AR-1 process 

dt
d
m =- xm

1
m+ ~m

where ~m is white noise and xm is the decay time constant. The role of the slow random 
walk rn is to capture the long-term trend and mean. Meanwhile, the tapering process m is 
designed to respond to short-term changes during the data update operations and to decay 
smoothly to zero during the forecast operations. The excitation forecast would then re-
flect the long-term trend or mean as n t] g = rn tp^ h without the instantaneous perturbation 
m t] g " 0 for t 2 tp.

When a tapering process similar to that described above was used to replace each of the 
polar motion excitation processes n1 and n2, polar motion prediction errors were found to 
decrease by 15 percent for a 10-day lead time and by 20 percent for a 20‑day lead time [16]. 
Also, use of additional annual and semi-annual stochastic oscillators similar to S in Equa-
tions (6) and (7) was found to reduce the error by 30 percent for a 10-day lead time and by 
50 percent for a 20-day lead time [16]. Such upgrades to the polar motion stochastic models 
are presently under consideration.

III. Observation Models

KEOF generates UTPM estimates by combining several time-series of independent observa-
tions. The observation data include geodetic measurement products from very long baseline 
interferometry (VLBI), the Global Positioning System (GPS), lunar laser ranging (LLR), and 
satellite laser ranging (SLR) instruments, as well as analysis and forecast products of AAM 
from dynamical models used in numerical weather forecasting. Each observation series has 
a distinct set of physical attributes such as the instrumentation types and analysis/produc-
tion centers as well as the accuracy, frequency, and latency of reported values. These attri-
butes for the observation series used currently by KEOF are summarized in Table 5.

The observation model [Equation (2)] relates the observed values z (t) at a given epoch t  
with the coincident state variables x (t) and specifies the uncertainty in the observed values 
as the variances of the additive white noise o t] g. Most of the observation series report all 
or part of the three UTPM variables directly. Consequently, the corresponding portions 
(matrix rows) of the observation operator H t] g have very simple one-to-one mappings (Sec-
tion III.A).

There are several exceptions to this simple observation model. First, the UT0 and variation 
of latitude (VOL) observation series from the single-station LLR and the T  and V  series from 
JPL’s single-baseline VLBI (see Table 5) report degenerate (singular) linear combinations of 
UTPM variables. The corresponding rows of the observation matrix H t] g are non-elementa-
ry. Second, the observation models for the AAM and GPS LOD series contain both the stan-
dard white noise o t] g (which is uncorrelated in time) and time-correlated noise processes. 
The latter are commonly called colored noise processes. Since correlation structures in the 
colored noise are modeled by stochastic dynamics, the colored noise processes are members 

(11)
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of the state vector x (t). A random walk or first-order autoregression (AR-1) process [6] is 
typically used to model colored noise dynamics. These models have been determined em-
pirically using procedures applied similarly to model the excitation processes (Section II.C).

In Section III.A, the general features of the observation model [Equation (2)] are presented. 
The observation operators for the UT0, VOL, T , and V  series are then described in Sec-
tion III.B. Colored noise and other features of the observation models for the AAM series 
(Section III.C) and GPS LOD and polar motion rate series (Section III.D) are then detailed.

A. General Features

The general form of KEOF’s observation model [Equation (2)] is a linear observation func-
tion with additive measurement noise. As described previously (Section II.C and Table 4), 
deterministic time series such as tides and annual harmonics have been removed from each 
observation series prior to forming the observation vector z (t). In addition, the constant 

Table 5. Observations used by KEOF as of January 6, 2009. Each “quantity used” is a distinct measurement series, 

where PMX and PMY are x  and y components of polar motion. Each of the “transverse” (T    ) and “vertical” (V    ) 

components of the Earth orientation, UT0, and variation of latitude (VOL) is a linear combination of PMX, PMY, and 

UT1 (see text). Listed under “constrained variables” are the state variables from the current KEOF version (OP-C). 

The “frequency” of each measurement technique is not strictly regular due partly to data drop-outs. For data 

“latency,” a typical value is listed, with the minimum value noted within the parentheses. 

Observation  
Set

JPL  

TEMPO

GSFC  

Intensives

GSFC  

Multibaseline

JPL  

Quick Look

IGS Final  

Combined

IGS Rapid  

Combined

JPL Lunar  

Laser Ranging

ILRS  

Combined

NMC  

0-hr

NMC  

120-hr

  
Type

VLBI

VLBI

VLBI

GPS

GPS

GPS

LLR

SLR

AAM

AAM

Quantities 
Used

T , V

UT1

PMX, PMY,  

UT1

PMX, PMY,  

LOD

PMX, PMY

PMX, PMY

UT0, VOL

PMX, PMY

AAM analysis  

(Aa)

AAM forecast  

(Af )

Constrained  
Variables

pX, pY, U

U

pX , pY , U

pX, pY , A, nA, 

nG 0, nG1

pX, pY

pX, pY

pX, pY , U

pX, pY

A

A, nA f, b

Typical  
Uncertainty*

0.3, 1.2 mas

0.025 ms

0.5, 0.5 mas,  

0.015 ms

0.2, 0.15 mas,  

0.01 ms

0.06, 0.03 mas

0.07, 0.07 mas

0.075 ms,  

1.0 mas

0.2, 0.2 mas

0.05 ms

0.05 ms

  
Frequency

Twice 

monthly

Daily

Every 1–3 

days

Daily

Daily

Daily

Irregular

Daily

Daily 

Daily

Latency,  
days

7 (4)

3 (1)

18 (10)

1 (1)

15 (12)

1 (1)

Variable 

(n/a)

7 (7)

1 (1)

1 (1)

*Nominal uncertainty values are listed, since with few exceptions they are time-dependent.
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and linear trends, referred to as bias and rate, are adjusted for each series to minimize 
possible inconsistencies among the instrument types due to differences in measurement 
reference (e.g., [17]). The stated uncertainties of the measurements are also adjusted by 
multiplicative and/or additive modifications of the covariance matrix. Both the bias-rate 
corrections and the uncertainty adjustment parameters for all components of a given data 
set are determined simultaneously in a multivariate approach using maximum likelihood 
estimation.2 Finally, the outlying data points are deleted. The details of these preprocessing 
procedures can be found in [11].

Since the Kalman filter ingests the observations as they become available, not all the mea-
surement series listed in Table 5 are processed simultaneously at any observation epoch t, 
which typically happens at a daily interval. Thus, the dimensions of z (t), H t] g, and o t] g are 
accordingly time-dependent. The error variances and covariances (elements of matrix R) are 
time-varying in general.

Each row of the observation matrix H t] g is associated with a measurement value available 
at time t. As shown in Table 5, the majority of the measurement series are observations of 
polar motion and UT1, each of which can constrain a UTPM state variable (pX, pY , or U  
directly. In such a case, the corresponding row of H t] g is simply an elementary vector (a 
vector whose entries are all zeros except for a single entry of a 1), where the position of the 
lone nonzero entry specifies the state variable constrained by the observation.

B. Single-Station LLR and Single-Baseline VLBI

Quantities reported by the single-station LLR and single-baseline VLBI are linear transfor-
mations of the UTPM parameters pX, pY, and U . Each of these measurement techniques can 
provide only two of three components of the transformed UTPM vector. The observation 
series are thus “degenerate” since they alone cannot specify UTPM uniquely [11]. They can 
nevertheless constrain linear combinations of the three UTPM parameters.

The observations from the single-station LLR are UT0 and the VOL denoted as Dz. These 
are linearly related to pX, pY , U  as 

Dz = pX cos m- pY sin m

(UT0 - TAI) cos z = pX sin m sin z + pY cos m sin z + U cos z

where z, m^ h are the latitude and longitude of the station, respectively.

From the single-baseline VLBI, a rotation of Earth about an axis parallel to the baseline does 
not change the relative position of the radio telescopes with respect to the source; hence, 
this component of Earth’s orientation is not determinable from VLBI observations taken 
from that single baseline. The observables from the single-baseline VLBI are the transverse 
T] g and vertical V] g components of Earth orientation [11], and the UTPM parameters can 

be constrained by T  and V  as

2 Described in an unpublished manuscript by L. Sung and J. Alan Steppe, “Estimation of Data Uncertainty Adjustment 
Parameters for Multivariate Earth Rotation Series,” 1994.

)
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T =- vyPX - vx pY + vzU

V = xy pX + xx pY - xzU

where vx,vy,vz^ h and xx, xy, xz^ h are basis vectors of the orthonormal transformation deter-
mined by the locations of the two VLBI telescopes [11] and are constants.

C. Atmospheric Angular Momentum Observations

The AAM analyses Aa^ h and forecasts A f^ h used by KEOF are provided daily by NOAA’s Na-
tional Centers for Environmental Prediction (NCEP) based on measurements and numeri-
cal models of atmospheric dynamics. The atmospheric analysis contains information from 
up-to-date measurements, while the forecast is primarily the result of forward projection 
of the atmospheric state using the model dynamics. The daily AAM analysis series from 
NCEP contains 1 day of AAM data, which is given in 6‑hr increments, from midnight to 
midnight. Operationally, KEOF uses only the AAM values given at midnight. The daily AAM 
forecast series currently contain 7.5 days of AAM forecasts that are given in 12‑hr incre-
ments. The current KEOF operation uses only the forecast at the 5-day (120‑hr) lead time.

1. OP-A implementation. For the OP-A Universal Time dynamics [Equations (4) and (8)], 
Freedman et al. [10] have modeled the AAM data (Aa and A f  scaled for conversion to a time 
unit) to be direct observations of LOD (state variable L) and proposed the following obser-
vation models:

Aa = L + nAa+ oAa

A f = L + nAa+ nAf + b+ oA f

where oAa and oA f  are the time-uncorrelated components of the measurement uncertainty 
(whose variance values are given in Table 5) and nAa, oA f , and b are the correlated compo-
nents, or colored noise processes. The structures and parameters of the colored noise pro-
cesses have been determined empirically from archived coincident series of L, Aa, and Af  as

dt
d
nAa = ~Aa, dt

d
b = 0,

dt
d
nA f =- xF

1
nA f + ~A f

where the variance values for the white noise forcing processes ~Aa and ~A f  are given in 
Table 2, while the regression constant xF  is given in Table 3. The random walk process nAa  
represents the time-correlated portion of the observation noise when AAM is used as an 
observation of LOD. The constant b and AR-1 process nA f are used collectively to model 
discrepancy between the AAM analysis Aa and forecast Af  series, as simulations of atmo-
spheric circulation are known to “drift” away from measurements due to model imperfec-
tion and numerical errors that lead to low-frequency, time-dependent bias. Note that b is 
technically a random walk whose forcing process happens to have a power of zero. With a 
nonzero power, b can be used to model a slowly varying drift rather than a constant bias.

2. OP-B and C implementation. In the OP-B and C Universal Time model [Equations (4,9, 
10)], LOD L is no longer a state variable but is represented by two excitation processes as 
L = A + nA, where the state variable A represents the physical AAM process (the total 

(12)

(13)

(14)
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effect of AAM on LOD). This newer representation for L is more consistent with the obser-
vation that the spectral power of L is greater than that of A [10]. Since all non-atmospheric 
components of LOD dynamics are lumped into the state variable nA , the AAM data Aa and 
Af  are now considered to be observations of the variable A (as opposed to L). The observa-
tion models for the AAM data Aa and Af  are

Aa = A + oAa

A f = A + nAf + b+ oA f

where the noise processes oAa, oA f ,nA f , b_ i  are identical to those in the OP-A version (Sec-
tion III.C).

3. Towards a general AAM observation model. Because of the importance of the AAM 
data to UT1 forecasts, various improvements to the AAM observation model are under con-
sideration for the operations. In particular, since the 1- to 4-day forecasts of AAM may be 
of higher quality than the 5-day lead time alone Af^ h, it can be expected that using other 
forecast values would improve UT1 prediction by KEOF. Incorporating a larger number 
of AAM estimates can also be expected to average out potentially anomalous values and 
reduce effects of some instantaneous events (e.g., wind bursts) that might be singular in a 
certain realization (i.e., lead time) of the numerical atmospheric state. A preliminary study3  
has shown the possibilities for as much as a 2-cm improvement in the 5-day UT1 prediction 
when more AAM forecasts with different lead times are incorporated. To formulate a more 
flexible framework to assimilate additional AAM series into KEOF estimates, the AAM analy-
sis Aa can be considered as a null lead-time forecast. Thus, both Aa and Af  can be denoted 
as An, where n = 0, 2

1
, 1, 1 2

1
,g , 7 2

1  is the forecast lead day for the 12-hourly NCEP forecasts. 
Specifically, A0 / Aa and A5 / Af . Since correlations among these AAM values are expect-
ed to be significant, the cross correlations need to be quantified and taken into account for 
assimilation of the AAM values at multiple lead times. In particular, covariances among oAn  
denoting the white noise components of the observation error associated with An, would 
have to be determined for the set of n representing lead times of interest. Relative benefits 
of assimilating various combinations of the available AAM data can then be examined. Such 
examination is ongoing at present.

D. GPS Observations

The Global Positioning System can be used to determine LOD, polar motion, and polar 
motion rate. Of these, polar motion and LOD measurements are used by KEOF at present. 
The only GPS-based LOD measurement used by KEOF at present is the JPL Rapid Service 
GPS LOD series (Table 5). Use of other GPS analysis products such as IGS Final LOD series is 
under consideration for future operations. In addition to LOD, GPS can provide measure-
ment of polar motion and polar motion rate. Use of the polar motion rate measurements is 
also being considered for future operations.

(15)

(16)

3 J. T. Ratcliff, “Improving UT1 Predictions with AAM Forecasts,” JPL Interoffice Memorandum (internal document), Jet 
Propulsion Laboratory, Pasadena, California, February 10, 2006.

,
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1. Colored noise processes. The GPS LOD measurements are corrupted by unmodeled mo-
tion of the GPS satellite constellation. Consequently, the GPS-measured LOD values should 
be considered as proxy measurements of Earth’s length of day, since they are not unbiased 
LOD determinations but include non-negligible time-dependent effects of the motion of 
the GPS satellite constellation. Thus, before combining the GPS-measured LOD values with 
other, uncorrupted EOP measurements, the effect of the motion of the satellite constella-
tion on the GPS-measured LOD values must be taken into account.

KEOF does this by using colored noise processes to model these effects, which can be 
estimated by analyzing the difference between the proxy GPS LOD measurements and 
uncorrupted determinations of Earth’s LOD as given by an independent reference series. At 
present, the effect of the unmodeled motion of the GPS satellite constellation is modeled4 
as the sum of random walk nG 0 and AR-1 nG1 processes. Thus,

LGPS = A + nA+ nG 0+ nG1 + oGPS

where LGPS is the proxy LOD measurement from GPS, oGPS is a white-noise element of o t] g 
with its nominal variance value given in Table 5, and the random walk and AR-1 colored 
noise processes are given as

dt
d
nG 0 = ~G 0, dt

d
nG1 =- xG

1
nG1 + ~G1

with ~G 0 and ~G1 defined in Table 2 and xG  given in Table 3. The GPS LOD data are used 
operationally only in OP-B and later versions of KEOF, in which LOD is modeled as 
L = A + nA as discussed in Section II.B.

2. Conversion to UT1-like quantity. While the observation equation [Equation (17)] im-
plies that the LOD measurement from GPS is instantaneous, each reported GPS LOD value 
LGPS tab^ h is actually an average over a time window ta, tb6 @

LGPS tab^ h =
tb- ta^ h

1
L t] gdt .-

tb- ta^ h

DU ta, tb^ h

ta

tb#

where tab d ta, tb6 @ is the reported observation epoch and DU ta, tb^ h / U tb^ h- U ta^ h is  
the UT1 increment. The GPS LOD data are thus potentially better estimates of the UT1 
increment 

DU ta, tb^ h = ta- tb^ h $ LGPS tab^ h

than the instantaneous LOD at time tab. Using such UT1 increments, a UT1-like quantity lU  
can be evaluated from a sequence of the GPS LOD measurements as

lU tn^ h = U t0^ h+ DU t0, t1^ h+ DU t1, t2^ hg + DU tn- 1, tn^ h

4 Empirical derivations by K. Hamdan, “Stochastic Modeling of GPS-Derived LOD,” JPL Interoffice Memorandum 
(internal document), Jet Propulsion Laboratory, Pasadena, California, no date.

(17)

(19)

(18)

(20)

(21)
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where U t0^ h is the most recent available UT1 measurement and tn- 1, tn6 @ is the time interval 
associated with the most recent GPS LOD observation. The resulting value of lU  can then 
be assimilated by the Kalman filter as an observation for the state variable U  at time tn. 
KEOF assimilates only the most recent UT1-like quantity lU tn^ h.

To compute lU tn^ h, the initial UT1 value U t0^ h must be provided externally, and VLBI is cur-
rently the only instrument that can provide such a reference UT1 value. KEOF uses the lat-
est available VLBI measurement (among those listed in Table 5) for this purpose. In general, 
the starting time t0 of the GPS sequence does not match with the epoch of the latest UT1 
from VLBI. Linear interpolations are hence used to co-locate the GPS and VLBI data in time. 
Also, the averaging intervals of the GPS measurement can be overlapping (or can have gaps 
in between), and the actual realization of Equation (20) requires an appropriate scaling 
to adjust for the overlaps (or gaps). For the JPL Rapid Service GPS LOD series, the optimal 
length of the averaging interval tb- ta has been found to be 36 hr by empirically testing 
different window widths for overall filter performance.

The evaluation of the UT1-like quantity as above is called the INTELA procedure in KEOF 
operations. At present, KEOF uses the GPS LOD values both for INTELA and as observations 
of instantaneous LOD as described previously (Section III.D.1). When the INTELA proce-
dure was incorporated into KEOF, real-time accuracy for the UT1 estimate was found to 
improve by approximately 33 percent.

3. Polar motion rate. The KEOF software has a general facility to assimilate a rate (time- 
derivative) measurement as follows: Given the system matrix F, the rate ox of the state vari-
ables can be expressed as Fx, which can be inserted into the observation model of the form 
of Equation (2) by replacing x with Fx. In particular, based on the polar motion portions 
[(Equations (3,6)] of the system equation, the observation model for the polar motion rates 
opX and opY would be

opX
opY
> H = - 2Q

v

- v

v

- 2Q
v
2Q
v

v

v

- 2Q
v

v

- 2Q
v> H
pX

pY

n1

n2

S

R

T

S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W

+
oopX

oopY
> H

where oopX and oopY are white noise processes representing the observation uncertainty. In-
corporation of polar motion rate measurements is currently under consideration for KEOF 
operations.

IV. Realizations of State Dynamics

The state dynamics equation [Equation (1)] plays a central role in Kalman filter and 
smoother realization. Components of the matrix equations have been described previously 
in Sections II, III.C, and III.D. Specifically, the state vector x (t) consists of the three UTPM 
parameters and the variables of excitation processes and colored noise processes (Table 1). 
The stochastic nature of the KEOF dynamical model originates solely from the excitation 
and colored noise processes, which are in turn forced by the white noise processes ~ (t) 

(22)
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(Table 2). The purpose of this section is to present a composite picture of KEOF state dy-
namics equations.

In all the UTPM stochastic models discussed so far, the dynamics of UT and PM are inde-
pendent from each other. The UT and PM portions are thus presented separately.

A. Universal Time State Dynamics

A key feature of KEOF’s UT1 model is the use of AAM as a proxy observation for LOD. This 
is facilitated by the set of colored noise processes. The combination of these models results 
in the OP-A version of UT dynamics:

In the OP-B and OP-C versions, the LOD state variable L is replaced by two excitation pro-
cesses, A and nA. In addition, two colored noise processes, nG 0 and nG1, are introduced in 
the observation model for the GPS-based LOD data:

dt
d

U

A

nA

b

nAf

nG 0

nG1

R

T

S
S
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S
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B. Polar Motion State Dynamics

The polar motion mechanics [Equation (3)] are supported by the dynamics of the three 
excitation processes n1, n2, S given by Equations (6) and (7) as

dt
d
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where S requires two state variables (S , oS ) because it is a second-order autoregression. This 
realization is used in all operational KEOF versions (OP-A, OP-B, OP-C).

(23)

(24)

(25)
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V. Kalman Filtering and Smoothing

The Kalman filter and smoother produce the optimal state estimates by combining the 
measurements z (t) in the observation model [Equation (2)] while constraining the state 
trajectory x (t) according to the dynamic model [Equation (1)]. Optimality is in the sense of 
the following least-squares minimization:

x t] g
min x t0^ h- x0 P 0-1

2
+ ox - Fx

t0

t p#
Q- 1
2
dt+ z- Hx

tdT t0, t p_ i

/
R- 1
2

where v M
2
/ vTMv denotes weighted inner product; ox denotes the time derivative of x; t0 

and t p are, respectively, the initial and final times of the analysis; T t0, t p^ h is the set of obser-
vation epoch time-indices during the analysis; x0 is the given initial condition for the state 
dynamics [Equation (1)], and P0 is the error covariance matrix associated with this initial 
condition. Note that the last two terms in Equation (26) are derived from the equations of 
dynamics [Equation (1)] and observation [Equation (2)]. The effect of the initial parameters 

x0,P0^ h on the optimal estimates tends to diminish as the analysis duration t0, t p7 A increases 
due to accumulation of the measurements z.

The state trajectory estimated by the smoother, denoted as xS t] g, is the minimizing solu-
tion to the least-squares problem [Equation (26)] for t0 # t # t p. The estimate by the filter, 
denoted as xW t] g , equals to the minimizing solution only at the final epoch (present time) 
t p, or xW t p^ h = xS t p^ h. The filtered estimate xW t p^ h, however, can be updated recursively us-
ing the Kalman filter algorithm as t p is increased to extend the analysis duration in re-
sponse to data accumulating over time. The filter recursion can also be propagated into 
the future (without incorporation of measurements) to produce optimal predictions for 
t 2 t p. Smoothing, on the other hand, requires relatively more computational resources 
for retrospective analysis and storage of the past measurements or state trajectories. Both 
the filter and smoother algorithms produce error covariance matrices PW t] g and PS t] g 
that accompany the respective estimates xW t] g and xS t] g. The covariance matrices satisfy 

PW t] g- PS t] g $ 0 (positive semi-definite) for t0 # t # t p, indicating that the uncertainty in 
the filtered estimates is expected to be higher than that of smoothed estimates.

Application of the Kalman filter and smoother algorithms requires discretization of the 
stochastic differential equation [Equation (1)], mainly by deriving a discrete-time state 
transition matrix from the system matrix F. The formulas used for the discretization pro-
cedure are described first in Section V.A. The Kalman filter recursion is presented next in 
Section V.B. KEOF uses the Kalman filter recursion to generate two filtered state trajectories 
— one processed forward in time and the other backward in time. The two trajectories are 
then combined to form the smoothed estimates, as described in Section V.C.

A. Discretization of the Stochastic Model

Given the present state x t] g, a future state value x t+ Dt] g can be computed by integrating 
the stochastic model [Equation (1)] as

x t+ Dt] g = U Dt] gx t] g+ U t+ Dt- x] g~ x] gdx
t

t+ Dt#

(26)

(27)
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where U is the state transition matrix given as

U Dt] g = exp F $ Dt] g =
k!

Fk Dt] gk

k= 0

3

/

and Dt is the interval of time step. Normally, Dt is the interval between adjacent measure-
ment epochs (for the full set of heterogeneous measurement series) or specified output 
epochs and does not need to be a constant. For numerical stability, an upper limit for Dt is 
imposed by the software parameter maxdt, which is currently 31 days in the operational 
KEOF code.

Since the interval Dt can be time-dependent in KEOF, the state transition matrix needs to be 
computed at run-time. Recall that the stochastic model [Equation (1)] consists of dynami-
cally disjoint equations for the core dynamics of PM and UT as well as the excitation and 
colored noise processes. Each of these processes has an algebraically closed form (rather 
than an infinite series) formula to realize (or in one case to approximate, as detailed below) 
a submatrix portion of the state transition matrix [Equation (28)]. The remainder of this 
section details these submatrix formulas for the state transition matrix U Dt] g.

The submatrix formula for the PM dynamics is by far the most complex. Consider the 
6 × 6 system matrix in Equation (25), which is operational at present. The system matrix is 
partitioned into 2 × 2 submatrices and the corresponding state transition matrix is similarly 
partitioned; these partitioned 6 × 6 matrices can be written respectively as
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where I is the identity matrix (of implied dimensions). Three of the nontrivial state-transi-
tion submatrices can be written in closed forms5 as:

UA = e
-
2Q
v
Dt cos vDt

-sin vDt

sin vDt

cos vDt
= G,UB = 1

0

0

- 1
= G+ e- 2Qv Dt -cos vDt

sin vDt

sin vDt

cos vDt
= G,

UD = e
-
2

a1
Dt
cosXoDt+ 2Xo

a1 sinXoDt

- Xo

a2 sinXoDt

Xo

1
sinXoDt

cosXoDt- 2Xo

a1 sinXoDt
> H

where Xo / a2 - a1
2 /4_ i

1/2
 is the resonance frequency of the stochastic oscillator. The sub-

matrix UC is approximated6 as an infinite series derived from Equation (28) as

UC = n!
Dt] gn

An- j
j= 1

n

/ CD j- 1e o
n= 1

3

/ =
S11 Dt] g

S21 Dt] g

S12 Dt] g

S22 Dt] g
> H

 

(28)

5 Derived by D. D. Morabito and collaborators in an unpublished version of [3].

6 Closed-form formulas are available but are more complex: L. Sung, JPL Interoffice Memorandum 335.2-92.05 (internal 
document), Jet Propulsion Laboratory, Pasadena, California, 1992.
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where each Sij Dt] g is a polynomial of Dt. KEOF realizes UC using a truncated series by 
limiting each Sij Dt] g to be a 10th-order polynomial. The number of terms (order) in the 
truncated polynomial expansion can be varied by adjusting the software parameter ncoef. 
The polynomial coefficients are evaluated at run-time by subroutine coefgen. The other 
submatrices of the state transition matrix are computed by subroutine propagate.

For the UT dynamics, all the current excitation processes are modeled as random walks. 
In particular, consider the model given by Equations (4) and (5), where N3 = 2  and the 
excitation processes are given as dt

d
p3, i = ~3, i . This stochastic model corresponds to the UT 

dynamics in the OP-B and C versions and can be written in a matrix form as

dt
d
U

p3,1

p3,2

R

T

S
S
S
S

V

X

W
W
W
W
=

0

0

0

- 1

0

0

- 1

0

0

R

T

S
S
SS

V

X

W
W
WW

U

p3,1

p3,2

R

T

S
S
S
S

V

X

W
W
W
W
+

0

~3,1

~3,2

R

T

S
S
S
S

V

X

W
W
W
W

The corresponding state transition matrix can be obtained easily from Equation (28), since 
the series terminates (becomes null) after two terms as

UU Dt] g = I+

0

0

0

-Dt

0

0

-Dt

0

0

> H = 1

0

0

-Dt

1

0

-Dt

0

1

> H

which serves as another submatrix component.

Each of the excitation and colored noise processes can be written as a simple scalar equa-
tion, dt

d
n = cn+ ~, where c is a constant (0 for a random walk, -1/xF or -1/xG for 

the AR-1 processes used in OP-C) and is an element of the system matrix F. The cor-
responding element for the state transition matrix would be given by Equation (28) as

Un Dt] g = exp cDt] g.

B. Filtering Formulas

In the Kalman filter, the state trajectory x (t) at any given time t is considered to be a ran-
dom vector governed by a Gaussian distribution whose mean is the optimal trajectory xW t] g 
and covariance matrix is given by PW t] g. The Kalman filter is an algorithm to compute the 
mean x (t) and covariance PW t] g recursively in time. Each recursive step in the Kalman filter 
has two components: the prediction stage and the update stage. In the prediction stage, the 
mean and covariance are stepped forward in time using the dynamical equation [Equa-
tion (1)], while in the update stage the mean-covariance pair is updated by the noisy mea-
surements [Equation (2)] using Bayes’ rule. At any given time t , the dynamically predicted 
state value (e.g., UTPM forecasts) is called the prior (or a priori) estimate and is denoted as 
x t] g. The prior estimate is updated by the coincident measurements to yield xW t] g, which is 
called the posterior (or a posteriori) estimate. The corresponding prior and posterior covari-
ance matrices are denoted as P t] g and PW t] g, respectively.
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The primary function of the prediction stage is to forecast the future distribution of the 
dynamical trajectory based on the stochastic model [Equation (1)], given the initial (pres-
ent) Gaussian distribution. Using the state transition matrix, this can be achieved through 
the formulas

x t+ Dt] g = U Dt] gxW t] g

P t+ Dt] g = U Dt] gPW t] gU Dt] gT + U x] gQU x] gT
0

Dt# dx

where Q is the covariance matrix associated with the random forcing ~ as described pre-
viously. Currently, Q is a diagonal matrix whose diagonal terms are constants, given in 
Table 2. Note that Equation (29) is consistent with Equation (27), since the expectation 
(mean) of the forcing series ~ is assumed to be zero. Operationally, the prediction stage is 
performed by the subroutine propagate, while the integral in Equation (30) is computed 
by the subroutine qsetup.

To initialize the filter recursion, the mean xW t0^ h and covariance PW t0^ h at the starting time t0 
must be provided. In the KEOF code, these initial conditions are passed to the main Kalman 
filtering routine filter.f through the name list init.nml as the constants xapri and 
papri, obtained from a previous filtering run of earlier data. The current KEOF operation is 
initialized to January 2, 1998.

The purpose of the update stage is to produce the posterior mean and covariance by com-
bining the prediction and measurement through the observation model [Equation (2)]. The 
formulas used for the update stage can be derived [2] by applying Bayes’ rule to the Gauss-
ian distribution as

PW = P
-1
+ HTR-1H^ h

-1

xW = x + PWHTR-1 z- Hx] g

where time t is fixed throughout this stage and hence omitted from the formulas. Since 
the components of the observation equation [Equation (2)] are not defined unless t is at 
an observation epoch, the data updates [Equations (31) and (32)] are performed only at 
observation epochs. At other times, we let PW = P and xW = x , which is consistent with 
Equations (31) and (32) if R-1 = 0. Conceptually, lack of observation can be considered to 
be equivalent with having a (fictitious) observation with infinite uncertainty variance, or 

R-1 = 0.

C. Smoothing Formulas

The Kalman filter recursion is performed forward in time and the resulting trajectory is 
saved at specified epochs (e.g., twice daily). To obtain a smoothed estimate of the trajec-
tory, the filtered estimate needs to be retrospectively updated dynamically. The first step to 
achieve smoothing is to perform a Kalman filter recursion backward in time. In KEOF code, 
the backward filtering is performed by using a negative Dt in the Kalman filter recursion 
formulas presented above, except that the interval of the integration in Equation (30) is 
modified as

(31)

(29)

(30)

(32)
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P t+ Dt] g = U Dt] gPW t] gU Dt] gT + U x] gQU x] gT
Dt

0# dx

It can be shown (e.g., [2]) that the optimally smoothed trajectory xS t] g and its covariance 
PS t] g can be computed by a weighted average of the forward and backward trajectories (us-
ing the inverse of the covariance matrices as the weights):

PS = PW f-1 + P b-1` j
-1

xS = PS P
W
f

-1
xW f + Pb-1xb` j

where the subscripts f  and b denote the results of forward and backward filters, respectively 
(time t is fixed and hence omitted again for brevity). The main product of KEOF is the 
smoothed trajectory xS t] g and its uncertainty variance series given by the diagonal ele-
ments of the covariance matrix PS t] g.

As mentioned previously, KEOF at present uses the software machinery for the forward filter 
to perform its backward filtering task. This practice effectively approximates the backward 
filter in two areas: one of these involves the state transition matrix. In the discrete-time 
implementation adopted here, the backward state transition matrix should correspond to 
the inverse of the forward matrix U Dt] g from the same time interval; however, the back-
ward matrix U -Dt] g used in the current realization is not exactly the inverse U-1 Dt] g due 
to the approximations (such as the series truncation for UC ) to numerically realize the state 
transition matrix. The other area of approximation involves initialization of the backward 
filter. Since there is no knowledge of the future state (UTPM) values, the corresponding 
uncertainty variance values should, in principle, be infinite. Since a covariance matrix with 
infinite variances is numerically degenerate, backward filtering is usually accomplished us-
ing an alternate Kalman filter algorithm called an information filter, which propagates the 
inverse of the covariance matrix instead of the covariance matrix itself [2]. Since KEOF at 
present does not employ such an algorithm, it instead approximates the initial conditions 
for the backward filter using an arbitrary state vector and a covariance matrix with very 
large, but finite, variance values.

Approximations in the backward filter can affect the smoothed estimates as well. The two 
issues mentioned above, however, can be remedied using the Rauch-Tung-Striebel (RTS) 
smoother (e.g., [2]), which is an algebraic combination of the information filter algorithm 
and the formulas of optimal averaging [Equations (34) and (35)]. The RTS smoother ingests 
the result of the forward Kalman filter and produces optimal smoothed estimates using a 
single recursion that operates backward in time: 

H t] g = PW f t- Dt] gUT Dt] gP f
-1
t] g

PS t- Dt] g = PW f t- Dt] g- H t] g P f t] g- PS t] g7 AHT t] g

xS t- Dt] g = xW f t- Dt] g+ H t] g xS t] g- x f t] g6 @
where Dt corresponds to the interval of the archived forward filter result. An advantage of 
the RTS smoothing algorithm is that initialization of the backward recursion is straightfor-

(33)

(37)

(36)

(38)

(34)

(35)
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ward; it simply uses the latest forward-filter outputs as xS t p^ h = xW f t p^ h and PS t p^ h = PW f t p^ h 
where t p is the final time (at the end of the forward recursion), and presents no issue with 
numerical degeneracy. Also, a backward state transition matrix, i.e., U-1 Dt] g or U -Dt] g, is 
no longer needed. Recently, an experimental RTS smoother has been implemented for the 
KEOF system. When compared to the currently operational smoother, the approximations 
in the operational backward filter have been found to introduce negligible discrepancies 
between the two UTPM smoothed estimates. The RTS smoother code is under consideration 
to be included for the operational system due to its streamlined numerics.

VI. Conclusion

The KEOF produces estimates and predictions of Universal Time and polar motion using the 
Kalman filter and smoother algorithms. The mathematical components of the KEOF formu-
lation — the stochastic models, observation models, and the filter and smoother equations 
— have been presented. Although the operational product from the OP-C version of KEOF 
has been consistently meeting the current DSN accuracy requirements,7 it has been shown 
that the mathematical components of KEOF can be modified in several ways to improve 
its performance to meet tighter DSN accuracy requirements expected in the future. Also, a 
number of organizations, both domestic and international, are producing observations of 
Earth orientation parameters. Observation accuracy of these parameters, as well as scientific 
understanding of their dynamics, are steadily improving due to technical advances. It can 
therefore be expected that periodic upgrades of KEOF components will be needed in order 
to take advantage of these improvements. The mathematical components of the KEOF soft-
ware have been categorically partitioned and discussed in this article in order to facilitate 
future modifications. Possible upgrades suggested by this report include:

Refinements of the polar motion excitation models, including use of nonidentical ran-•	
dom walk models for n1 and n2 (Section II.C), as well as enhancements with AR-1 models 
and additional annual/semi-annual periodic components (Section II.D). 

Incorporation of all or part of 1- to 7.5-day lead time AAM forecast data, in addition to •	
the 5-day lead-time data (A f ), using a generalized AAM observation model (Section III.C) 

Incorporation of the GPS-based polar motion rate measurements (Section III.D), as well •	
as additional GPS-based LOD series (Section III.D). 

Use of the Rauch-Tung-Striebel smoother in place of the backward filtering and forward–•	
backward combination procedures (Section V.C).
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